
Workin’ on the
Rails Road

Obie Fernandez
Original presentation delivered to the

Object Technology User Group

St. Paul / Minneapolis
September 20th 2005

Agenda
 Introduction to Ruby Programming
 Ruby on Rails Fundamentals and

Interactive Demonstration

 Break

 Working in Ruby and Rails
 Is Rails Ready for Prime Time?

 Questions and Answers

Questions and Slides

 Ask questions at any time

 Slides and samples will be

available online at

obiefernandez.com

 I’ll show that address and others

again at the end

Introduction to
Ruby Programming

“Smalltalk was one of the main influences for
Ruby. Whenever you find a main difference

between Perl and Ruby there's a good chance
to find this feature in Smalltalk.”

RubyGarden

What is Ruby?
 Object-Oriented scripting language

 Conceptual similarities to Smalltalk

 Many system and text manipulation

features like Perl

 Emphasis on simplicity and design

elegance

Ruby is a Dynamic
Language
 Completely Object-Oriented

 All data is an object, no exceptions

 Operators are methods

 Dynamic Behavior
 Possible to add new classes, add or redefine

methods at runtime

 An instance of one class can behave
differently than another instance of the same
class at runtime

Powerful Features
 Single Inheritance, but…

 Modules provide namespaces and allow
‘mixin’ capability

 A module is a collection of methods and
constants

 Ruby has blocks
 Code surrounded by do…end or { … }

 They are true closures; get variable bindings

 Are passed to methods quite often

Ruby Variables
 Don’t need declaration

 Variable scope determined by

naming convention

 foo … local variable

 @foo … instance variable

 $foo … global variable

 Foo or FOO … constant

Variable Assignment
 An assignment sets the rvalue to the

lvalue
 Then it returns the that value as the

result of the assignment expression
 Assigning to a variable or constant is

hardwired into Ruby
 Assigning to an object attribute is a

method call
 Parallel assignment

Strings
 String

 Instances usually created with literal
expressions

 Sequences of 8-bit bytes
 Printable characters or not, doesn’t matter
 Over 75 standard methods

 Symbol
 Denoted by colon, like :foobar
 Basically an interned string, always the same

instance no matter where used in codebase

Regular Expressions
Ruby supports Perl-style regular expressions…

Extract the parts of a phone number
phone = "123-456-7890"

if phone =~ /(\d{3})-(\d{3})-(\d{4})/
 ext = $1
 city = $2
 num = $3
End

Arrays and Hashes
 Array

 Ordered collection of references
 Literal is list of objects between square

brackets

 Hash
 Used extensively in practice
 Any type of object can be used as index
 Elements are not ordered
 Literal form is key/value pairs enclosed in {…}

using => to map keys to values

Numerics

 Integer
 Small integers are Fixnum, up to size of a

native machine word minus 1 bit
 Big integers are Bignum, up to size of

available memory
 Conversion happens automatically

 Float
 Real numbers
 Uses native double-precision floating-point

representation

Ruby Methods
 Only way to change an object’s state

 Use def keyword and start with
lowercase letter

 Use trailing ? for queries and ! for
dangerous methods

 Use trailing = for methods that take
assignment

Writing Methods
 Default values for parameters supported

 Variable-length argument lists by placing
an asterisk on the last parameter

 Methods accept blocks implicitly or via
the last parameter being prefixed with an
ampersand

 Every called method returns the value of
the last expression. Explicit use of return
statement is optional

Calling Methods
 Specify receiver, name of method
 Parameters and block optional
 Parentheses optional
 Leaving off receiver defaults to

current object
 No ‘keyword arguments’ but

commonly accomplished with
hashes

Access Control
 Determined dynamically
 Public is the default except for

initialize method
 Protected

 Access by any instance of class
 Includes subclasses

 Private methods can be called only
in the context of the current object

Conditionals
 Boolean expressions

 Any value that is not nil or the constant

false is true

 && and || operators are shorcircuiting

 defined? operator checks its parameter

 ||= is a common idiom to assign a

default value to a nil element

If and Unless
 Similar to other languages - if, then,

elsif, else, end

 unless is negated form

 then is mandatory only on a single-
line if statement

 tack on to end of normal statement
to use as conditional modifiers

Iterators

 while and until are built-in

 for … in is syntactic sugar,
translated automatically to a call
to the each iterator method

 Other iterators are times, upto,
downto, and step and work with
numerics

Exceptions
 Ruby has hierarchy of exceptions

 Catch them using begin, rescue, ensure, and end
 Define multiple rescue clauses or specify more than

one exception to catch as parameters

 Exception object is available as $! or use hash notation
to assign variable names on the rescue clause

 Use retry after attempting to fix an exception to
rerun the begin clause

 Throw exceptions in your own code by using a
raise statement

 Subclass StandardError or one of its children

Memory Model
 Garbage Collection

 True mark-and-sweep
 Works with all Ruby objects

 Multithreading
 In-process inside the interpreter
 Completely portable
 Some negatives like not taking

advantage of multi-processor hosts

More Language Features

 Portable
 OS independent threading
 Can load extension libraries

dynamically

 Library support
 RubyGems package manager
 Tons of high-quality open source

libraries available at RubyForge (similar
to CPAN for Perl)

Ruby Tools

The following tools are included

with the Ruby distribution

 debugger

 irb – interactive ruby shell

 benchmark

 profiler

 rdoc

The Pickaxe Book

Ruby on Rails
Fundamentals

“Rails is a full-stack, open-source web
framework in Ruby for writing real-world

applications with joy and less code than most
frameworks spend doing XML sit-ups”

Rails Creator - David H. Hansson

What Is Rails?

‘Kitchen Sink’ MVC Web
Application Framework written
in Ruby
 ActiveRecord API
 ActionController API
 Templating Engine
 Scripts and lots of other stuff…

Big Productivity Gains

 Convention over configuration

 Everything is in Ruby

 Imposes strong design

constraints

 Generators for creating code

skeletons and scaffolding

Rails Models

ActiveRecord Model Classes

 Encapsulate persistence logic

 Contain business rules

 Tightly coupled to database tables

 Declare relationships to each other

ActiveRecord Basics
 Extend ActiveRecord::Base

 Don’t declare properties

 Declare relationships to other
models with the following ‘macros’
 belongs_to

 has_many

 has_and_belongs_to_many (joins)

Rails Views
User interface done with templates

 HTML with Ruby snippets in .rhtml files

 Easy XML generation in .rxml files

 Lots of HTML and AJAX helper methods

 Sophisticated layout and ‘partials’

functionality

ERB Template Example

XML Builder Example

Rails
Controllers
Process requests via action

methods that map to URL

 Interact with model classes

 Set any data needed by view as

field variables

 Select view to render or redirect

Controller Basics
 Extend ActionController:Base
 Request parameters in ‘params’

 Naming conventions mean Rails can
translate paramaters into a hashtable

 Handles multi-dimensional data in
forms pretty easily

 Web session in ‘session’ hash
 Redirect scope available in ‘flash’

hash for next request only

Actually Working
with Ruby on Rails

Based on real-world

project experience

Real Productivity Gains
Possible
Your results may vary!

 How many developers on team?

 Proficient with Ruby?

 Proficient with Rails?

 Greenfield project or trying to

adapt to legacy data sources?

Rails Doesn’t Make Data
Modeling Any Easier
 Stabilize your schema before

ramping up UI development

 Bootstrap your db schema with

a migration script

 Write an exampledb rake task

Speaking of Rake

 Dependency-based programming

 So much better than Ant you’ll

want to use it on all your projects

 Martin Fowler wrote a great

article about it at http://

martinfowler.com/articles/rake.html

Not much IDE support…

No Intellij for Ruby and none on the
horizon for awhile
 Current Ruby editors are kind of crappy

 Eclipse RDT is starting to improve but
not there yet (IMHO)

 The nature of dynamically-typed
languages means you might want to
just use a good text-editor instead

… how to deal with it
 Testing, testing, testing

 Use IRB, the interactive console

 Pair-programming very useful

 Keep Pickaxe and Rails books handy

 ri – command-line documentation

Unit Tests Crucial
 Once you start getting beyond CRUD

features you better unit test

 The lack of static typing will get you

if you’re not used to it

 It’s a big namespace so watch out

for your code colliding with Rails
methods or magic

Learning Ruby

 Think about syntax, cause your

editor won’t

 Learn to use the debugger

instead of ‘puts’ing around

 Blocks are very powerful. Learn

how to use them

Learning Rails

 Don’t overcommit based on

initial enthusiasm

 Easy to get started, but there is

a learning curve

 Read the Rails book

You’ll Write Less Code
 Let Rails do the heavy lifting for you

under the scenes

 Ruby is significantly less verbose

than Java and C#

 Take advantage of…

 Convention over configuration

 Ruby lends itself to writing DSL

Don’t Repeat Yourself

 Refactor, refactor, refactor!

 Move repetitive view code into helpers

 Consolidate common page chunks into

partials

 Rails has A LOT of built-in

functionality (which you won’t know
about as a beginner)

Don’t Reinvent the
Wheel
 Form helpers are your friend

 Rails ‘acts_as’ methods are very

useful

 Look for RAA and RubyForge

libraries, particularly to

integrate to web services

ActiveRecord Reminder

“When you have this static view of the
database, expressed in terms of n
classes to match your n tables, then
you tend to solve your problems in
those precise terms, because the
code generated by the O/R code
generation tools will encourage (and
perhaps even enforce) such
behavior.” - Brad Wilson

Take Advantage of
ActiveRecord Flexibility
 Remember ActiveRecord works at runtime

and doesn’t enforce those static views of
your data

 The ActiveRecord pattern itself
encourages addition of meaningful finder
methods like find_specials

 Custom SQL queries can cause additional
columns to get “tacked on” to returned
objects without extra effort.
(like for aggregate and other types of calculated columns
defined in your SQL select statement)

Belongs_to Table Must
Have the Foreign Key
 This can really trip you up, even

though it’s repeated multiple times
in the docs

 The term “belongs to” is admittedly

confusing

 Consider it as “references” or “has

reference to”

Don’t Abuse HABTM
Speaking from experience…

 has_and_belongs_to_many can be pretty
difficult to understand and use effectively

 Prefer simple has_many/belongs_to
relationships where possible

 Once you start adding attributes to the
join table, ask yourself if that join actually
wants to be a first-class object

ActionMailer Notes

 ActionMailer works great for

sending email, particularly the

integration with templating

 Receiving email is still

nightmarish depending on your

platform configuration

AJAX is Easier With
Rails but…
 Some of the documentation is poor

 You still have to understand

JavaScript to use it effectively

 There are definite “dos and don’ts”

around where and why to use AJAX

Other Gotchas

 Learning where it’s okay to use

symbols instead of strings

tricky

 Lots of methods take hash of

parameters and it’s easy to

mistype one

 ‘Whiny Nil’ is annoying

Are Ruby and
Rails Ready for

Prime Time?
No simple answers, so

let’s discuss it…

The Future of Ruby
“It sure looks like more than a fad to me.” - Tim Bray

 10 years of continual development and
refinement will continue

 Ruby 2.0 is on the horizon
 No Microsoft or Sun Microsystems

stupidity to ruin things 
 Compare with Python adoption rates
 Dynamic languages in general gaining

wider acceptance in the enterprise

Road to Rails 1.0
80 issues pending (as of 9/20/2005)

http://dev.rubyonrails.com/report/9

 Internationalization tops the list

 Several issues address developer-
friendliness with error messages and
unknown parameters to API calls

 Minor bugs with acts_as_ features

 RC might be available in October ‘05

Softer Issues

 Am I ready for a new language

and development style?

 Is my team ready?

 Is my company ready?

 Do I have the right projects?

Common Apprehensions

Mostly concerns about ‘-ilities’
 Maintainability

 Future availability of Ruby programmers?

 Quality/readability of code?

 Platform support?

 Scalability
 Horizontal vs. Vertical scaling

 Performance concerns

Is Ruby better than..?
 Better at what?
 Some situations need one tool, other

situations another tool.
 Performance-wise Ruby is probably

slower than Java or C# in real-world
situations

 Is it worth worrying about relative
performance?

Pragmatic Dave on J2EE

“Using the full might of a J2EE
stack to write a small stand-
alone application is using a
sledgehammer to crack a nut. But
I keep hearing the sound of nuts being
pulverized as developers seem to think
that using anything other than J2EE is
somehow unprofessional.”

More Pragmatic Dave
“I’d rather write in a language that let’s

me focus on the application, and
which lets me express myself clearly
and effectively.”

“A better algorithm will easily gain
back any marginal performance hit I
take for using a slower language.”

 Posted on http://blogs.pragprog.com/

J2EE Backlash Fueling
Interest in Rails
 “Enterprise Java, has grown

into a complex behemoth
that consists of layer upon

layer of complexity”

 David Geary, author of the best-selling

book on Java Server Faces (JSF)

Web 2.0 and Rails
 Fast time-to-market
 Tight integration with AJAX libraries
 New emphasis on focused,

interoperable applications
 Less time coding infrastructure

means more emphasis on clean
design and elegance in all aspects of
the application

When should I use Rails?

 Small developer-focused
applications

 Opportunities to do parallel
development as proof of
productivity impact

 Once you are comfortable with
Ruby and Rails programming

When not to use Rails!

 Really large applications

 Dealing with legacy databases.
Hibernate is much better for
“schemas-from-hell”

 Unenthusiastic or mediocre

developers won’t “get it”

The Right Developer
Attitude is Crucial
“Agile teams get Ruby on Rails

sooner than traditional ones”
 Ruby on Rails increases productivity

and sheer joy of development

 Reality is some programmers simply

don’t care about that

Ruby on Rails and
Consulting Businesses
 Expect web design shops to

continue moving into Rails and
away from PHP (it’s just too
much better not to do so)

 Faster projects with less people
means larger consulting firms
might have trouble adapting!

Future of Ruby on Rails

 Ruby is what makes Rails special, the
interest in general Ruby programming
will continue to expand rapidly

 Tons of similar projects popping up, but
none with mindshare and critical mass of
Rails project

 Integration of dynamic languages such as
Ruby with Semantic Web technologies
such as RDF holds significant promise

Questions and
Comments

In Conclusion…
Thank you for coming to the presentation!

 Rails has a large enthusiastic
community at rubyonrails.org

 ThoughtWorks is seeking Ruby on
Rails enterprise projects

 I blog regularly about Rails and agile
enterprise topics at
obiefernandez.com

 I love getting email…
obiefernandez@gmail.com

